3.44 \(\int \frac{\sec ^3(c+d x)}{a+a \sec (c+d x)} \, dx\)

Optimal. Leaf size=51 \[ \frac{\tan (c+d x)}{a d}-\frac{\tanh ^{-1}(\sin (c+d x))}{a d}+\frac{\tan (c+d x)}{d (a \sec (c+d x)+a)} \]

[Out]

-(ArcTanh[Sin[c + d*x]]/(a*d)) + Tan[c + d*x]/(a*d) + Tan[c + d*x]/(d*(a + a*Sec[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.105528, antiderivative size = 51, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {3790, 3789, 3770, 3794} \[ \frac{\tan (c+d x)}{a d}-\frac{\tanh ^{-1}(\sin (c+d x))}{a d}+\frac{\tan (c+d x)}{d (a \sec (c+d x)+a)} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^3/(a + a*Sec[c + d*x]),x]

[Out]

-(ArcTanh[Sin[c + d*x]]/(a*d)) + Tan[c + d*x]/(a*d) + Tan[c + d*x]/(d*(a + a*Sec[c + d*x]))

Rule 3790

Int[csc[(e_.) + (f_.)*(x_)]^3/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[Cot[e + f*x]/(b*f), x
] - Dist[a/b, Int[Csc[e + f*x]^2/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x]

Rule 3789

Int[csc[(e_.) + (f_.)*(x_)]^2/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[Csc[e + f*x],
 x], x] - Dist[a/b, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3794

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int \frac{\sec ^3(c+d x)}{a+a \sec (c+d x)} \, dx &=\frac{\tan (c+d x)}{a d}-\int \frac{\sec ^2(c+d x)}{a+a \sec (c+d x)} \, dx\\ &=\frac{\tan (c+d x)}{a d}-\frac{\int \sec (c+d x) \, dx}{a}+\int \frac{\sec (c+d x)}{a+a \sec (c+d x)} \, dx\\ &=-\frac{\tanh ^{-1}(\sin (c+d x))}{a d}+\frac{\tan (c+d x)}{a d}+\frac{\tan (c+d x)}{d (a+a \sec (c+d x))}\\ \end{align*}

Mathematica [B]  time = 0.699149, size = 194, normalized size = 3.8 \[ \frac{2 \cos \left (\frac{1}{2} (c+d x)\right ) \sec (c+d x) \left (\sec \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right )+\cos \left (\frac{1}{2} (c+d x)\right ) \left (\frac{\sin (d x)}{\left (\cos \left (\frac{c}{2}\right )-\sin \left (\frac{c}{2}\right )\right ) \left (\sin \left (\frac{c}{2}\right )+\cos \left (\frac{c}{2}\right )\right ) \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right ) \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )}+\log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )\right )\right )}{a d (\sec (c+d x)+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^3/(a + a*Sec[c + d*x]),x]

[Out]

(2*Cos[(c + d*x)/2]*Sec[c + d*x]*(Sec[c/2]*Sin[(d*x)/2] + Cos[(c + d*x)/2]*(Log[Cos[(c + d*x)/2] - Sin[(c + d*
x)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + Sin[d*x]/((Cos[c/2] - Sin[c/2])*(Cos[c/2] + Sin[c/2])*(Cos
[(c + d*x)/2] - Sin[(c + d*x)/2])*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])))))/(a*d*(1 + Sec[c + d*x]))

________________________________________________________________________________________

Maple [A]  time = 0.033, size = 99, normalized size = 1.9 \begin{align*}{\frac{1}{ad}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-{\frac{1}{ad} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}-{\frac{1}{ad}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }-{\frac{1}{ad} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}+{\frac{1}{ad}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3/(a+a*sec(d*x+c)),x)

[Out]

1/a/d*tan(1/2*d*x+1/2*c)-1/a/d/(tan(1/2*d*x+1/2*c)+1)-1/a/d*ln(tan(1/2*d*x+1/2*c)+1)-1/a/d/(tan(1/2*d*x+1/2*c)
-1)+1/a/d*ln(tan(1/2*d*x+1/2*c)-1)

________________________________________________________________________________________

Maxima [B]  time = 1.14049, size = 161, normalized size = 3.16 \begin{align*} -\frac{\frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a} - \frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a} - \frac{2 \, \sin \left (d x + c\right )}{{\left (a - \frac{a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}\right )}{\left (\cos \left (d x + c\right ) + 1\right )}} - \frac{\sin \left (d x + c\right )}{a{\left (\cos \left (d x + c\right ) + 1\right )}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

-(log(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a - log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a - 2*sin(d*x + c)/((a
 - a*sin(d*x + c)^2/(cos(d*x + c) + 1)^2)*(cos(d*x + c) + 1)) - sin(d*x + c)/(a*(cos(d*x + c) + 1)))/d

________________________________________________________________________________________

Fricas [A]  time = 1.99497, size = 266, normalized size = 5.22 \begin{align*} -\frac{{\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) -{\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \,{\left (2 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )}{2 \,{\left (a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

-1/2*((cos(d*x + c)^2 + cos(d*x + c))*log(sin(d*x + c) + 1) - (cos(d*x + c)^2 + cos(d*x + c))*log(-sin(d*x + c
) + 1) - 2*(2*cos(d*x + c) + 1)*sin(d*x + c))/(a*d*cos(d*x + c)^2 + a*d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{\sec ^{3}{\left (c + d x \right )}}{\sec{\left (c + d x \right )} + 1}\, dx}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3/(a+a*sec(d*x+c)),x)

[Out]

Integral(sec(c + d*x)**3/(sec(c + d*x) + 1), x)/a

________________________________________________________________________________________

Giac [A]  time = 1.3932, size = 113, normalized size = 2.22 \begin{align*} -\frac{\frac{\log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{a} - \frac{\log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{a} - \frac{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a} + \frac{2 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} a}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

-(log(abs(tan(1/2*d*x + 1/2*c) + 1))/a - log(abs(tan(1/2*d*x + 1/2*c) - 1))/a - tan(1/2*d*x + 1/2*c)/a + 2*tan
(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/2*c)^2 - 1)*a))/d